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Abstract: Computational methods for predicting compounds of specific pharmacodynamic, pharmacokinetic,
or toxicological property are useful for facilitating drug discovery and drug safety evaluation. The
quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR)
methods are the most successfully used statistical learning methods for predicting compounds of specific
property. More recently, other statistical learning methods such as neural networks and support vector
machines have been explored for predicting compounds of higher structural diversity than those covered by
QSAR and QSPR. These methods have shown promising potential in a number of studies. This article is
intended to review the strategies, current progresses and underlying difficulties in using statistical learning
methods for predicting compounds of specific property. It also evaluates algorithms commonly used for
representing structural and physicochemical properties of compounds.
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INTRODUCTION

Modern drug discovery efforts have primarily been based
on the search and optimization of compounds that possess
specific pharmacodynamic and pharmacokinetic properties,
and on the test of their potential toxicological and side
effects [1-3]. Methods for predicting these properties,
particularly in the early design stages, are useful for
facilitating drug development and drug safety evaluation [1,
4, 5]. As part of an effort for accelerating and reducing the
cost of drug discovery processes, computational methods
have been explored for predicting compounds that possess
specific pharmacodynamic, pharmacokinetic or toxicological
property [6-9]. In particular, statistical learning methods
have shown promising potential for performing these tasks
by statistically analyzing the structural and physicochemical
features of the compounds known to possess a particular
property to derive explicit or hidden statistical models or
rules for predicting the activity or property of new
compounds [8, 10, 11].

Quantitative structure activity relationship (QSAR) and
quantitative structure property relationship (QSPR) are the
first explored statistical learning methods that have found
successful applications in predicting activities of compounds
of specific property  [6, 7]. More recently, other statistical
learning methods such as neural networks (NN) and support
vector machines (SVM) have been explored for the
prediction of classes of compounds of more diverse ranges of
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structures than those covered by QSAR and QSPR
methods [8, 10, 11]. These recently explored statistical
learning methods classify compounds into two classes, one
possessing a particular property and the other without that
property, regardless of whether or not their structural and
physicochemical properties obey a QSAR- or QSPR-like
analytical relationship. They are therefore expected to be
applicable to compounds of more diverse structural ranges
than those covered by QSAR and QSPR methods.

This article reviews the strategies, current progresses and
underlying difficulties in the application of these statistical
learning methods. QSAR and QSPR methods have been
extensively reviewed elsewhere [6, 7] and they are thus not
described here. Proper representation of the structural and
physicochemical features of compounds is a key to the
successful application of statistical learning methods. A
large number of molecular descriptors have been derived to
quantitatively represent different structural and
physicochemical properties [12-15]. These molecular
descriptors and how they are selected and used in the
statistical learning methods are also discussed.

STRUCTURAL DIVERSITY OF COMPOUNDS

Structural diversity of the compounds in a dataset can be
determined by the diversity index (DI) which is the average
value of the similarity between all the pairs of compounds in
the dataset [16]:

DI =
Σ
N

i  = l
Σ
N

i  = l, i = j
sim(i , j)

N (N     l)
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Table 1. Diversity Index (DI) of Datasets of Compounds Used in Statistical Learning Methods

Dataset Number of compounds Diversity index

Statistical learning datasets Blood-brain barrier penetrating agentsa 158 0.388

Genotoxicityb 850 0.434

Torsade de pointes causing agentsc 344 0.456

P-glycoprotein substratesd 189 0.500

CYP3A4, CYP2D6, CYP2C9 substrates/inhibitorse 692 0.525

Human intestinal absorbing agentsf 218 0.543

Total clearanceg 503 0.562

Human serum albumin bindersa 93 0.585

Milk-plasma ratioa 121 0.596

Highly diverse datasets Satellite structuresh 8 0.231

FDA approved drugs 1121 0.495

NCI Diversity seti 1804 0.544

Congeneric datasets Penicillins 59 0.733

Cephalosporins 73 0.772

Fluoroquinolones 39 0.865

QSAR, QSPR datasets Estrogen receptor ligandsj 1009 0.692

Dihydrofolate reductase (DHFR) inhibitorsj 756 0.726

Benzodiazepine receptor ligandsj 405 0.739

Cyclooxygenase 2 (COX2) inhibitorsj 467 0.919
a [37]
b [38]
c [35]
d [36]
e [41]
f [15]
g Yap, C. W.; Li, Z. R.; Chen, Y. Z. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods. J. Mol. Graph. Mod.
2005, 24, 383.
h [63]
i [64]
j [65]

where sim(i,j) is a measure of the similarity between
compounds i and j and N is the number of compounds in
the dataset. The closer the DI is to 0, the more diverse is the
dataset. A common similarity measure is the Tanimoto
coefficient [17-19]:

sim(i , j)  =

Σ
d = l

i
Χdi Χd j

Σ
d = l

i
Χdi ΧdjΣ

d = l

i
(Χdi )

2 Σ
d = l

i
(Χdj )

2

where l is the number of descriptors computed for the
compounds in the dataset. Representativity of validation set
is measured by the mean Tanimoto coefficient between
compounds in the validation set and those in the training
set.

Table 1 gives the DI of the compound datasets studied
by statistical learning methods. It is found that the DI value

of some of the datasets is very small, as low as 0.388,
which is at the level of those of highly diverse datasets. For
comparison, the DI values of datasets containing congeneric
compounds are typically greater than 0.733, and those of the
compounds used in QSAR and QSPR are typically in the
range of 0.692 to 0.919. This suggests that statistical
learning methods are useful for studying many different
pharmacokinetic and toxicological properties which
intrinsically involve compounds of highly diverse structures.

MOLECULAR DESCRIPTORS

Molecular descriptors are used for representing structural
and physicochemical properties of compounds based on their
1D, 2D or 3D structure. There are a number of computer
programs for deriving molecular descriptors, which include
DRAGON [12], Molconn-Z [13], JOELib [14], and Xue
descriptor set [15]. Over 1400 molecular descriptors can be
derived from these methods, which range from constitutional
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Fig. (1). Examples of compounds not-well-represented by the currently available molecular descriptors. The not-well-represented part
of the structure is indicated by a dashed line.

descriptors to more complex 2D and 3D descriptors
representing different geometric, connectivity, and
physicochemical properties.

The commonly used descriptors can be divided into 18
classes, which include constitutional descriptors such as
molecular weight, geometrical descriptors such as volume
and surface areas, topological descriptors such as the number
of rings and rotatable bonds, RDF descriptors representing
interatomic distances in the entire molecule and other useful
information such as bond distances, ring types, planar and
non-planar systems, atom types and molecular weight [20],
molecular walk counts [21], 3D-MoRSE descriptors
describing features such as molecular weight, van der Waals
volume, electronegativities and polarizabilities [22], BCUT
descriptors representing connectivity information and atomic

properties relevant to intermolecular interaction [23], WHIM
descriptors describing size, shape, symmetry, atom
distribution and polarizability of a molecule [24], Galvez
topological charge indices and charge descriptors [25],
GETAWAY descriptors [26], 2D autocorrelations, functional
groups, atom-centred descriptors, aromaticity indices [27],
Randic molecular profiles [28], electrotopological state
descriptors [29], linear solvation energy relationship
descriptors [30], and other empirical and molecular
properties.

Not all of these descriptors are needed for representing
features of a particular class of compounds. Features useful
for compounds of a particular property can be selected either
by intuition as those used in QSAR and QSPR studies, or
by using feature selection methods. The commonly used
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feature selection methods include genetic algorithm-based
approach [31], recursive feature eliminations [32], and
simulated annealing-based approach [33]. Some of these
methods have gained popularity due to their effectiveness for
discovering informative features in the analysis of drug
activity [32, 34] and pharmacokinetic and toxicological
properties [15, 35-38].

However, in many cases, it is difficult to uniquely select
an optimum set of descriptors due to the high redundancy
and overlapping of many descriptors [39]. Separate sets of
descriptors containing different members of redundant
descriptor classes have been found to give similar prediction
accuracies [40]. The interpretation of the prediction results in
these cases should be more appropriately conducted at the
descriptor class level where redundant and overlapping
descriptors are grouped into classes [41].

It has been found that some compounds cannot be
adequately represented by the currently available molecular
descriptors [36, 38, 41]. (Fig. 1) gives examples of such
compounds. These include compounds containing inflexible
multi-rings, highly polar tetrazole rings, aromatic rings
separated by a specific atom, complex two ring system with
multiple heteroatoms, polycyclic aromatic structures, long
flexible chains, hydrazine group, and multiple ionisable
groups. Therefore, there is a need for deriving new
descriptors to adequately represent features of these and other
compounds.

COMMONLY USED STATISTICAL LEARNING
METHODS

Logistic Regression (LR)

LR [42] is based on the assumption that a logistic
relationship exists between the probability of class
membership and one or more descriptors. The probability

Y =
l

l + e-β 0 + β1χ1  + β2χ 2 + κ + βκχκ , where x={x1, …, xk} is a
feature vector, xk is a descriptor, β0 is the regression model
constant, β1 to βk is the coefficients corresponding to the
descriptors X1 to Xk. Y > 0.5 or Y < 0.5 indicates that the
vector x  belongs to the positive or negative class
respectively.

Linear Discriminant Analysis (LDA)

LDA [43] separates two classes of vectors by
constructing a hyperplane defined by the following linear

discriminant function: ΣL =
k

i
wixi , where L  is the resultant

classification score and wi is the weight associated with the
corresponding descriptor xi. A positive or negative L value
indicates that a vector x belongs to the positive or negative
class respectively.

k Nearest Neighbor (kNN)

In kNN, the Euclidean distance between an unclassified
vector x and each individual vector xi in the training set is
measured [44, 45]. A total of k number of vectors nearest to
the unclassified vector x are used to determine the class of
that unclassified vector. The class of the majority of the k

nearest neighbors is chosen as the predicted class of the
unclassified vector x.

C4.5 Decision Tree (C4.5 DT)

C4.5 DT is a branch-test-based classifier [46]. A branch
of the decision tree corresponds to a group of classes and a
leaf represents a specific class. A decision node specifies a
test on a single attribute value, with one branch and its
subsequent classes as possible outcomes. C4.5 decision tree
uses recursive partitioning to examine every attribute of the
data and rank them according to their ability to partition the
remaining data, thereby constructing a decision tree. A
vector x is classified by starting at the root of the tree and
moving through the tree until a leaf is encountered. At each
non-leaf decision node, a test is conducted to move into a
branch. Upon reaching the destination leaf, the class of the
vector x is predicted to be that of the leaf.

Probabilistic Neural Network (PNN)

PNN is a form of neural network that uses Bayes optimal
decision rule for classification [47]. Traditional neural
networks such as feed-forward back-propagation neural
network rely on multiple parameters and network
architectures to be optimized. In contrast, PNN only has a
single adjustable parameter, a smoothing factor σ for the
radial basis function in the Parzen’s nonparameteric
estimator. Thus the training process of PNN is usually
orders of magnitude faster than those of the traditional neural
networks.

Support Vector Machine (SVM)

Linear SVM constructs a hyperplane separating two
different classes of feature vectors with a maximum
margin [48]. This hyperplane is constructed by finding a
vector w  and a parameter b  that minimizes

 
 which

||w||2satisfies the following conditions: w · xi + b> + l, for yi
= + l (positive class) and w  · x i + b>  - l, for yi = - l
(negative class). Here xi is a feature vector, yi is the group
index, w is a vector normal to the hyperplane, |b| / ||w||2 is
the perpendicular distance from the hyperplane to the origin
and ||w||2 is the Euclidean norm of w . Nonlinear SVM
projects feature vectors into a high dimensional feature space
by using a kernel function such as K(xi, xj) = e- [  xi - xj]   /2a 22 . The
linear SVM procedure is then applied to the feature vectors
in this feature space. After the determination of w and b, a
given vector x can be classified by using sign[(w . x) + b], a
positive or negative value indicates that the vector x belongs
to the positive or negative class respectively.

PREDICTION PERFORMANCE

Classification Methods

Classification-based statistical learning methods are
intended for determining whether or not a compound
belongs to a compound class whose members possess a
common property. These methods are capable of
classification of a diverse range of compounds but they are
not intended for providing the activity of these compounds.
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Table 2. Performance of Classification-Based Statistical Learning Methods for Predicting Compounds of Specific
Pharmacodynamic, Pharmacokinetic or Toxicological Property. The Relevant Literature References are Given in
Supplementary Materials

Reported prediction accuracy

Property Method Molecular descriptors Number of compounds
in training set

Validation
method 

a Positive accuracy
Pp

Negative
accuracy

Pn

Overall
accuracy

P

HIA LDA TOPS-MODE 82 Validation set
(127)

95.5 76.5 92.9

C-SAR Simple physicochemical
parameters

977 Training set
(977)

97.0 81.7 95.7

PNN Log P, MR, TOP 76 Validation set
(10)

100.0 50.0 80.0

SVM Simple molecular properties,
molecular connectivity and shape,

E-state, Q-C, GEO

196 5 fold CV (196) 90.0 80.7 86.7

Bioavailability ORMUCS Log P, structural 232 Validation set
(40)

- - 60.0

Adaptive fuzzy
partition

CON, information, TOP, E-state,
physicochemical, ELE

352 Validation set
(75)

- - 64.0

P-gp substrate SVM Simple molecular properties,
molecular connectivity and shape,

E-state, Q-C, GEO

142 Validation set
(25)

84.2 66.7 80.0

BBB
penetration

MLR Daylight, thermodynamic, spatial,
structural, TOP, charge

48 Validation set
(150)

81.0 95.8 88.0

Discrimination
function analysis

TOP, substructures, GEO, Q-C 28 LOO (28) 100.0 91.7 96.4

PLS Log P, PSA, E-state 58 Validation set
(181)

85.7 46.7 66.3

PLS-DA ADME screen, geometry,
topology, VAMP electronic
parameters, VAMP energy

parameters, Sybyl surface areas

1696 Validation set
(82)

90.0 92.0 91.0

(Table 2) summarises the performance of the commonly-used
classification methods for predicting compounds of various
pharmacodynamic, pharmacokinetic and toxicological
properties. The performance of these methods has been
measured by the positive prediction accuracy Pp for
compounds that possess specific property and the negative
prediction accuracy Pn for compounds without that property.
Moreover, an overall accuracy P=(TP+TN)/N, where TP and
TN is the true positive and true negative respectively and N
is the number of compounds in the dataset, can also be used
to indicate the overall prediction performance. The number
of compounds in many of the studies listed in (Table 2) is
in the range of hundreds or even thousands of compounds,
which is significantly higher than the tens of compounds
typically used in QSAR and QSPR studies [49, 50].

The computed Pp values are in the range of 73% ~ 100%,
with the majority concentrated in the range of 80%~97%.
The computed Pn values are distributed in the range of 46%
~ 98%, with the majority concentrated in the range of
70%~97%. These results suggest that the classification
methods surveyed here have certain level of capability for
distinguishing between compounds of particular property

and those without that property. In these studies, the
negative accuracies Pns appear to be somewhat lower than
the positive accuracies Pps. One likely reason for the lower
Pns is the inadequate representation of the negative
compounds that are known to not have a particular property.
The number of the negative compounds in the published
studies is typically in the range of a few hundred or less,
which is unlikely to be sufficient to fully represent the vast
chemical space of millions of compounds in the chemical
databases.

Regression Methods

Regression-based statistical learning methods are
intended for providing some estimate about the activity
value in addition to the determination of whether or not a
compound possesses a specific property. (Table 3 )
summarises the performance of several regression methods
for predicting compounds of various pharmacodynamic,
pharmacokinetic and toxicological properties. The
performance of these studies is primarily measured by the r2
value, which measures the explained variance between the
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(Table 2). contd.....

Reported prediction accuracy

Property Method Molecular descriptors Number of compounds
in training set

Validation method 
a Positive accuracy

Pp
Negative
accuracy

Pn

Overall
accuracy P

SUBSTRUCT Substructures 8678 10 fold CV (8678) 83.3 71.2 76.3

Bayesian neural
network

CON, log P, ISIS
fingerprint

>73000 Validation set (84) 94.7 73.9 83.3

PCA VolSurf 110 Validation set (120) 90.9 64.8 71.7

SVM Structural 172 Validation set (304) 78.9 60.4 76.0

VolSurf 238 Validation set (238) 91.8 68.5 86.6

MW, lipophilicity, H-bond 274 Validation set (50) 82.7 80.2 81.5

CYP3A4
inhibitor

PLS CATS, TOP, ELE, count,
structural, atom types

311 Validation set 1 (50)
Validation set 2 (10)

93.1

100.0

85.7

66.7

90.0

90.0

ANN Unity fingerprint 218 Validation set (72) 91.7 88.9 90.3

Consensus SVM DRAGON 602 Validation set (100) 92.0 97.3 96.0

CYP2D6
inhibitor

Consensus
recursive

partitioning

TOP, E-state,
physicochemical,
fragment keys, 1D
similarity scores

100 Validation set (51) 100 76.0 80.0

Consensus SVM DRAGON 602 Validation set (100) 90.0 95.0 94.0

CYP2C9
inhibitor

Consensus SVM DRAGON 602 Validation set (100) 88.9 96.3 95.0

CYP2D6
substrate

Consensus SVM DRAGON 602 Validation set (100) 98.2 90.9 95.0

CYP3A4
substrate

Consensus SVM DRAGON 602 Validation set (100) 96.6 94.4 95.0

CYP2C9
substrate

Consensus SVM DRAGON 602 Validation set (100) 85.7 98.8 97.0

Genotoxic KNN TOP, GEO, ELE, PSA 120 Validation set (20) 66.7 92.9 85.0

Consensus KNN TOP, GEO, ELE, Q-C,
CPSA, H-bond, nitrogen-

specific

334 3 fold CV (334) 69.3 74.1 72.2

Consensus model
(KNN, LDA,

PNN)

TOP, GEO, ELE, CPSA,
H-bond

227 3 fold CV (227) 73.8 84.3 81.2

SVM Simple molecular
properties, molecular

connectivity and shape, E-
state, Q-C, GEO

577 Validation set (123) 77.8 92.7 89.4

Torsade de
pointes
causing
agent

SVM LSER 271 Validation set (78) 97.4 84.6 91.0

Abbreviations: HIA – human intestinal absorption; P-gp – p-glycoprotein; BBB – blood-brain barrier; LDA – linear discriminant analysis; C-SAR - classification structure-
activity relations; PNN – probabilistic neural network; SVM – support vector machine; ORMUCS – ordered multicategorical classification method using the simplex
technique; MLR – multiple linear regression; PLS – partial least squares; PLS-DA – partial least squares-discriminant analysis; PCA – principal component analysis; ANN –
artificial neural network; KNN – k nearest neighbors; TOPS-MODE – topological substructural molecular design; MR – molar refractivity; TOP – topological; E-state –
electrotopological state indices; Q-C – quantum-chemical; GEO – geometrical; CON – constitutional; ELE – electronic; PSA – polar surface area; ADME – absorption,
distribution, metabolism, elimination; MW  – molecular weight; H-bond – hydrogen bonding capabilities; CPSA – charged polar surface area; LSER – linear solvation
energy relationship; CV – cross validation
a – number in parenthesis denotes the number of compounds used for model
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Table 3. Performance of Regression-Based Statistical Learning Methods for Predicting Compounds of Specific
Pharmacodynamic, Pharmacokinetic or Toxicological Property. The Relevant Literature References are Given in
Supplementary Materials

Property Activity Method Molecular descriptors Validation methoda Reported prediction statistics

HIA %FA MLR LSER Training set (38)
Validation set (131)

r2=0.82, q2=0.77, SE=15, F=53
RMSE=14, MAE=11

Physicochemical, structural fragment Training set (417)
Validation set (50)

r2=0.79, SE=12.34, F=38.83
r2=0.79, SE=12.32

Sigmoidal PSA Training set (20) r2=0.94, RMSE=9.2%

PLS Log P, molecular size, H-bond, counts Training set (16)
Validation set (63)

r2=0.55, q2=0.45
RMSE=28.6

Atom type Training set (169) r2=0.921, q2=0.787

ANN TOP, ELE, GEO, CPSA, H-bond Training set (67)
Validation set (10)

RMSE=0.4, MAE=6.7
RMSE=16.0, MAE=11.0

CON, TOP, chemical, GEO, Q-C Training set (67)
Validation set (10)

RMSE=0.590
r2=0.802, RMSE=0.425

TOP Training set (396)
Validation set (185)

r2=0.92, RMSE=9.1, MAE=7.3
r2=0.80, RMSE=11.8, MAE=9.8

GRNN Log P, MR, TOP Training set (67)
Validation set (10)

RMSE=6.5
RMSE=22.8

FA CART Structural Training set (899)
Validation set 1 (362)
Validation set 2 (67)
Validation set 3 (90)
Validation set 4 (37)

AAE=0.120
AAE=0.169
AAE=0.170
AAE=0.200
AAE=0.140

logit(%FA) PLS MolSurf Training set (13)
Validation set (7)

r2=0.903, q2=0.685, RMSE=0.523
RMSE=0.488

TOP Training set (13)
Validation set (7)

r2=0.903, q2=0.818, RMSE=0.523
RMSE=0.413

SVR Log P, MR, E-state Training set
Validation set

RMSE=0.445, MAE=0.404
RMSE=0.372, MAE=0.290

Bioavailability %F Regression Substructure counts Training set (591)
2000 runs of 80/20 splits (591)

r2=0.71, q2=0.63, RMSE=17.92
r2=0.58, RMSE=20.40

MLR Bulk properties, solubility parameters,
Q-C, CON, TOP

Training set (159)
Validation set (10)

r2=0.352, q2=0.254
r2=0.72

ANN CON, TOP, chemical, GEO, Q-C, bulk
properties, solubility parameters

Training set (137)
Validation set (15)

r2=0.736, RMSE=19.21
r2=0.680, RMSE=20.47

CODES neural
network

CODES Training set (28) q2=0.90

P-gp inhibitor log(1/EC50) PLS SIBAR Training set (100) r2=0.731, q2=0.661

BBB
penetration

logBB MLR MW, log P Training set (20) r2=0.691, SE=0.439, F=40.23

LSER Training set (57) r2=0.907, SE=0.197, F=99.2

Solvation energy Training set (55) r2=0.672, SE=0.41, F=108.3

MW, log P Training set (33) r2=0.897, SE=0.126, F=131.1

H-bond Training set (20) r2=0.723, SE=0.0012, F=46.93

PSA Training set (45) r2=0.841, F=229

PSA, log P Training set (55)
Validation set 1 (5)
Validation set 2 (5)

r2=0.787, SE=0.354, F=95.8
MAE=0.14
MAE=0.24
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(Table 3) contd.....

Property Activity Method Molecular descriptors Validation methoda Reported prediction statistics

PSA Training set (45) r2=0.95

Solvation free energy Training set (55)
Validation set 1 (7)
Validation set 2 (5)
Validation set 3 (25)

r2=0.72, SE=0.37
MAE=0.16
MAE=0.14
MAE=0.37

MW, molecular lipoaffinity Training set (55)
Validation set (11)

r2=0.790, q2=0.763, SE=0.35,
F=97.7

r2=0.838, SE=0.30

LSER Training set 1 (148)
2 fold CV (148)

5 runs of 80/20 splits (148)

r2=0.745, q2=0.711, SE=0.343, F=69
r2=0.718, SE=0.381
r2=0.733, SE=0.356

Hydrogen bonding, molecular volume,
solvent-accessible surface area

Training set (76) r2=0.94, SE=0.173, F=311.307

Spatial, structural, thermodynamic Training set (59)
Validation set (12)
Validation set (21)

r2=0.757, q2=0.701, SE=0.408,
F=42.135

RMSE=0.29
RMSE=0.50

E-state Training set (102)
Validation set (20)

5 fold CV (102)

r2=0.66, q2=0.62, SE=0.45, F=62.4
RMSE=0.38, MAE=0.32
RMSE=0.47, MAE=0.38

Solute aqueous dissolution and
solvation, solute-membrane interaction,

general intramolecular solute

Training set (56)
Validation set (7)

r2=0.845, q2=0.795
RMSE=0.449, MAE=0.398

Daylight, thermodynamic, spatial,
structural, TOP, charge

Training set (48)
Validation set (17)

r2=0.837, q2=0.786, MAE=0.26,
SE=0.19

r2=0.68, MAE=0.41

Hydrophobicity, hydrophilicity,
molecular bulkiness

Training set (78)
Validation set 1 (13)
Validation set 2 (22)

r2=0.767, q2=0.736, SE=0.364,
F=81.5

r2=0.88, RMSE=0.26, MAE=0.16
r2=0.61, RMSE=0.48, MAE=0.39

4D molecular similarity measures Training set (104)
Validation set (46)

r2=0.69, q2=0.64

r2=0.56

Physicochemical, GEO, structural,
TOP

Training set (88)
Validation set 1 (13)
Validation set 2 (15)

r2=0.864, q2=0.847, SE=0.392,
F=60.98

RMSE=0.558, MAE=0.407
RMSE=0.533, MAE=0.437

Least-median-of-
squares regression

Training set (86) r2=0.89, RMSE=0.31

PCR Log P, H-bond, PSA Training set (61)
Validation set 1 (14)
Validation set 2 (25)

r2=0.730, q2=0.688, RMSE=0.424
r2=0.576, RMSE=0.628
r2=0.616, RMSE=0.789

Atomic contributions to van der Waals
surface area, log P, MR, partial charge

Training set (75) r2=0.83, q2=0.73, RMSE=0.32

PLS MolSurf Training set (28)
Validation set 1 (28)
Validation set 2 (6)

r2=0.862, q2=0.782, RMSE=0.288
RMSE=0.353
RMSE=0.473

TOP, molecular volume, MW, CON,
H-bond

Training set (58)
Validation set 1 (12)
Validation set 2 (22)

r2=0.850, q2=0.752, SE=0.318,
F=102

RMSE=0.235
RMSE=0.408

TOP Training set (28)
Validation set (30)

r2=0.751, q2=0.696, RMSE=0.368
RMSE=0.375

Log P, MW, MR, molar volume, H-
bond

Training set (19)
Validation set (37)

r2=0.905, q2=0.791, RMSE=0.287
RMSE=0.338
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(Table 3) contd.....

Property Activity Method Molecular descriptors Validation methoda Reported prediction statistics

VolSurf Training set (79) r2=0.78, q2=0.65

Log P, PSA, E-state Training set (58)
Validation set (39)

r2=0.846, RMSE=0.308, MAE=0.232
r2=0.617, RMSE=0.413, MAE=0.499

Atom type Training set (57)
Validation set (13)

r2=0.910, RMSE=0.502
RMSE=0.326

CODES neural
network

CODES Training set (36) q2=0.88

Bayesian neural
net

Property-based, TOP indices, CIMI,
atomic charges

Training set (106) r2=0.76, q2=0.65, SE=0.54

GRNN DRAGON Validation set (30) r2=0.701, RMSE=0.361

SVR Log P, MR, E-state Training set
Validation set

RMSE=0.242, MAE=0.200

RMSE=0.439, MAE=0.298

HSA binding log Khsa MLR E-state Training set (84)
10% CV (84)

Validation set (10)

r2=0.77, q2=0.70, SE=0.29, F=43
r2=0.68

r2=0.74, RMSE=0.32, MAE=0.31

ELE, TOP, information-content,
spatial, structural, thermodynamic

Training set (84)
Validation set (10)

r2=0.78, q2=0.73
r2=0.88

GRNN DRAGON Validation set (18) r2=0.851, RMSE=0.202

SVR CON, TOP, GEO, electrostatic, Q-C Training set (84)
Validation set (10)

r2=0.94, RMSE=0.124
r2=0.89, RMSE=0.222

Protein binding log((1-
fu)/fu)

MLR Log P Training set (226)
Validation set (94)

r2=0.68, MAE=0.45
r2=0.51, MAE=0.53

%fb Nonlinear
regression

Log P Training set 1 (84)
Training set 2 (44)
Validation set (23)

r2=0.803, MAE=0.104
r2=0.786, MAE=0.055

r2=0.830

fb ANN Atom and functional group counts,
connectivity index differences,

connectivity index quotients, charge
indices, vertex counts, ramifications,

Wiener number, MW, Log P

Validation set (6) r2=0.745

Milk-plasma
ratio

M/P ANN CON, TOP, molecular connectivity,
GEO, Q-C, physicochemical, liquid

properties

Training set (123) r2=0.61, RMSE=0.781

GRNN DRAGON Validation set (20) r2=0.677, RMSE=0.454

Total
clearance

CL KNN TOP, physical properties, partial
charge, pharmacophore feature,

potential energy

Training set (32)
Validation set (6)

q2=0.77
r2=0.94

ANN Atom and functional group counts,
connectivity index differences,

connectivity index quotients, charge
indices, vertex counts, ramifications,

Wiener number, MW, Log P

Validation set (6) r2=0.731

GRNN Lipophilicity, ionization, molecular
size, H-bond

Training set (23) r2=0.775, q2=0.731

Abbreviations: HSA – human serum albumin; FA – fraction absorbed; F – bioavailability; BB – ratio of concentration of drug in brain to concentration of drug in blood;

Khsa – binding affinity of drug to human serum albumin; fu – fraction of drug unbound in plasma; fb – fraction of drug bound in plasma; M/P – ratio of concentration of

drug in milk to concentration of drug in plasma; CL – total clearance; GRNN – general regression neural network; CART – classification regression tree; SVR – support

vector regression; PCR  – principal component regression; SIBAR  – similarity based structure activity relationship; CIMI  – chemically intuitive molecular index;

3DMoRSE – 3D molecule representation of structures based on electron diffraction; ATS – Moreau-Broto autocorrelation; GETAWAY - geometry, topology, and atom-

weights assembly; RDF – radial distribution function; WHIM – weighted holistic invariant molecular descriptors
a – number in parenthesis denotes the number of compounds used for model validation.
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computed activities and experimentally estimated activities.
Moreover, q2 values, RMSE values and average-fold errors
for an independent validation set are also frequently
computed to further evaluate the predictive capability of
these studies. The computed r2 values range from 0.68 to
0.94 [51, 52], which is compared to the range of 0.51 to
0.88 in the conventional QSAR and QSPR studies [53, 54].
These suggest that regression-based methods are useful for
predicting the activity values of compounds of particular
property at accuracy levels comparable to conventional
QSAR and QSPR methods.

CONCLUSIONS AND PERSPECTIVES

Both classification- and regression-based statistical
learning methods consistently show promising capability for
predicting compounds of diverse ranges of structures and of
a wide variety of pharmacodynamic, pharmacokinetic, and
toxicological properties. Classification-based methods are
useful for the prediction of classes of compounds with few
or no quantitative activity data. Regression-based methods
can be used for quantitative prediction of the activity levels
if the activity data are available for a sufficient number of
compounds possessing the same property. Regression
methods have the capacity for estimating the contribution of
specific structural and physicochemical features of the
compounds to a particular property [55]. This capacity may
be explored for probing the mechanism of action for a
specific group of compounds that possess a particular
property.

In general, a sufficiently diverse set of positive
compounds (known to have a property) and negative
compounds (known to not have a property) is needed for
training a statistical learning system. Thus statistical
learning methods are not applicable for compounds with
little or no knowledge about their particular
pharmacodynamic, pharmacokinetic or toxicological
property. Mining of the compounds known to have a
particular property and those do not have that property from
the literature [56] and other sources [57, 58] is a key to more
extensive exploration of statistical learning methods.
Databases such as PDSP Ki database [59], KiBank [60],
PubChem [61], and CLiBE [62] that provide compound
property and activity data are useful resources for serving
this purpose, and more such databases are desired.
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